
 

 

Saturation effects in fluorescence correlation spectroscopy 
 

Lloyd M. Davis, Guoqing Shen and David A. Ball 

 
Center for Laser Applications, University of Tennessee Space Institute, Tullahoma, TN 37388 

 
ABSTRACT 

 
Fluorescence correlation spectroscopy (FCS) could provide a more useful tool for intracellular studies and biological 
sample characterization if measurement times could be reduced. While an increase in laser power can enable an 
autocorrelation function (ACF) with adequate signal-to-noise to be acquired within a shorter measurement time, 
excitation saturation then leads to distortion of the ACF and systematic errors in the measurement results. An empirical 
method for achieving reduced systematic errors by employing a fitting function with an additional adjustable parameter 
has been previously introduced for two-photon FCS. Here we provide a unified physical explanation of excitation 
saturation effects for the three cases of continuous-wave, pulsed one-photon excitation, and two-photon excitation FCS. 
When the time between laser pulses is longer than the fluorescence lifetime, the signal rate at which excitation saturation 
occurs is lower for pulsed excitation than for cw excitation, and due to the disparate timescales of the photophysical 
processes following excitation, it is lower still for two-photon excitation. We use a single-molecule description of FCS to 
obtain improved analytical ACF fitting functions for the three cases. The fitting functions more accurately account for 
saturation effects than those previously employed without the need for an additional empirical parameter. Use of these 
fitting functions removes systematic errors and enables measurements to be acquired more quickly by use of higher laser 
powers. Increase of background, triplet photophysics, and the cases of scanning FCS and fluorescence cross-correlation 
spectroscopy are also discussed. Experimental results acquired with a custom built apparatus are presented. 
 
1. INTRODUCTION 
 

Fluorescence correlation spectroscopy (FCS) is an increasingly popular method for determining species 
concentrations and diffusion coefficients of labeled components within biological samples [1]. For applications such as 
high throughput screening and intra-cellular studies with limited observation times, there is a need to make 
measurements with reduced data acquisition times [2].  In order to obtain adequate photon statistics and signal-to-noise 
for short measurement durations, it is desirable to increase the photon count rate by increasing the laser power. However, 
as the laser power is increased, saturation and other effects cause the autocorrelation function (ACF) to change in 
amplitude and shape [3,4]. A modified fitting function has previously been introduced to account for saturation in ACF 
data collected at high laser powers in 2-photon excitation experiments [5,6]. However, this fitting function is obtained 
with the assumption that saturation has an abrupt onset and causes the probe region to have a flat-top shape. The 
assumed shape “has no physical meaning and introduces fictitious parameters” [7]. The fitting function includes an 
additional quantity (α), which is essentially an empirical parameter that lends added flexibility for better fitting of the 
saturation-distorted ACF data. Rate equation models of the molecular population dynamics have been previously used in 
attempts to provide a better physical understanding of saturation in FCS with two-photon excitation and in fluorescence 
experiments in general [3,8]. However, Ref. [3] only considers continuous-wave (cw) excitation, Ref. [8] assumes 
complete ground-state repopulation between laser pulses, and neither presents fitting of the ACF with saturation. Below 
we discuss the physical processes that occur following excitation of a fluorescent molecule and we present rate equation 
models to give a unified explanation of saturation effects for cw excitation, pulsed one-photon excitation, and two-
photon excitation. Power series expansions of the fluorescence dependence on irradiance for each case are then used 
with a single-molecule derivation of the ACF to obtain improved fitting functions for FCS when saturation occurs. 
 

2. GENERAL SATURATION CHARACTERISTICS  
 

For one-photon excitation, either a cw laser beam or a train of sub-nanosecond pulses is used for sample excitation. 
However, for two-photon excitation, a train of pulses of duration ~100 femtosecond is usually used in order to attain 
adequate peak irradiance. The different timescales of the laser pulses and the physical processes that occur as a result of 
molecular excitation, which are indicated in Fig. 1 (a), give rise to different saturation behavior for one- and two-photon 
excitation and for pulsed and cw excitation. 
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Fig. 1: (a) Typical timescales of molecular processes: k1: one or two-photon excitation; k′1: one or two-photon stimulated 
emission; k2: collisional dephasing (~10 fs); k3: vibrational thermalization (~1 ps); k4: rotational reorientation (~100 ps—
100 ns); k5: fluorescence (~2 ns); k6: inter-system crossing (~200 ns); k7: phosphorescence (~1 µs); (b) Simplified 3-level 
scheme, in which only the electronic levels are retained. 
 

After an organic dye molecule is excited (at a rate k1 shown in Fig. 1 (a)) to a particular sublevel of the S1 manifold, 
its electronic wavefunction becomes dephased due to elastic collisions with solvent molecules within a timescale of 
k2

−1~10 fs, which is typically much faster than the laser excitation pulsewidth, and hence coherence effects are usually 
negligible and the optical Bloch equations that describe the system are well approximated by rate equations. After 
dephasing, thermal relaxation within the S1 manifold due to inelastic collisions with solvent molecules occurs within a 
timescale of k3

−1~1 ps. Reorientation of the transition dipole moment due to rotational diffusion of the molecule may also 
occur on a timescale of k4

−1~100 ps for a small dye molecule in aqueous solution and with k4
−1 up to ~100 ns for a 

chromophore rigidly bound to a macromolecule. Fluorescence and/or internal conversion back to the S0 manifold then 
occur within about k5

−1~2 ns. A competing process, which typically occurs about 1 in 100 times, and thus with     
k6

−1~200 ns, is intersystem crossing to the triplet T1 manifold. In typical oxygen-saturated aqueous solutions, relaxation 
from T1 back to the S0 manifold then occurs within about k7

−1~1 µs. Because of the disparate timescales of the molecular 
processes described above, the molecular energy level system in Fig 1 (a) is well approximated by the 3-level system 
shown in Fig. 1 (b), with k1→ k01, k′1→ k′01, k5→ k10, k6→ k12, k7→ k20. 

 
For cw excitation, saturation occurs primarily as a result of the decrease in the fractional population N0/N 

of the 
ground state 0 with increasing laser intensity. The laser pumps molecules from the ground state 0 to the excited singlet 
state 1, but the stimulated emission pumping from 1 to 0, k′01  is negligible, because k3 >> k1 in Fig. 1 (a).  The rate 
equations for the 3-level system may then be expressed as  
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where Nj / N  is the fractional population of level j, with 
jN N=∑ . Here, the cw excitation rate is  
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01 /ak I Eγσ= ,        (3) 

where σa is the absorption cross-section (equal to 3.82×10−21 cm3 M times the molar absorptivity), 〈I 〉 is the cw laser 
irradiance, and                   is the laser photon energy, in which h is Planck’s constant, c is the speed of light, and λ0 

is the 
vacuum wavelength of the laser. The mean fluorescence count rate from a single molecule, which is proportional to the 
decay rate k10, and the fractional excited state population N1/N, obtained from the second line of Eqn. (2), is given by 
 

       (4) 

where C is equal to the net collection and detection efficiency, the saturation intensity IS is given by  
(5) 

where η is defined by 
,                                                                                                        (6) 

(7) 

is equal to the fluorescence lifetime, and  
         ,                                                                                                        (8) 

in which                                 is the triplet crossing yield and                is the phosphorescence lifetime. 
 
For repetitively pulsed excitation, ground state depletion during the course of each laser excitation pulse is a major 

factor that contributes to saturation. With the assumption that the duration of the laser pulse δt is short compared to the 
fluorescence lifetime (δt<<τF), the decay of the excited state and triplet populations during the interval of the laser pulse 
0 < t < δt  can be ignored, and the top line of Eqn. (1) gives  

,       (during pulse)     (9) 
which has the solution  

(for δt<<τF)     (10) 
with 

       (11) 
where for simplicity, the irradiance during the laser pulse is approximated to be the constant value    .  However, when 
the laser excitation pulsewidth is shorter than k3

−1~1 ps, as it typically is for two-photon excitation, the laser not only 
excites the molecule, but for high irradiance it can drive the excited molecule back to the ground state by stimulated 
emission (as indicated in Fig. 1(b) by the downward transition at rate k′01), so that Eqn. (9) should be replaced by 

                           (during pulse).     (12) 
The time after excitation until the next laser pulse, T, is much greater than the time required for thermalization of the 
excited state manifold k3

−1~1 ps and hence in Eqn. (12) N1(0)≈0, so that the solution of Eqn. (12) is 
 ,  (for δt<< k3

−1),    (13) 
where we have assumed that k′01= k01, which will be the case if there is no difference in the degeneracy or density of 
levels in the S0 and S1 manifolds. For two-photon excitation, Eqn. (11) is replaced by 

,       (14) 
in which σTPF is the two-photon absorption cross section, typically expressed in units of GM=10−50 cm4 s. A comparison 
of Eqns. (10) and (13) shows that the width of the laser pulse (in comparison to the k3

−1~1 ps time for thermalization of 
the S1 manifold) can significantly alter the saturation behavior. Note that equation (14) is a classical approximation and 
σTPF should be regarded as an effective parameter for the particular detailed photon statistics (i.e., the second order 
quantum mechanical coherence function of the light), which will depend on the shape, chirp, and coherence of the pulse.  

After the laser pulse, the molecule relaxes from the excited state 1. The solution of Eqn. (1) with k10=0 can then be 
used with the initial condition of Eqn. (10) or (13) and the periodicity condition Nj(T)= Nj(0), j = 0,1,2, to determine the 
dependence of the mean fluorescence count rate        on the average laser irradiance,  

 
  .       (15) 

For sub-nanosecond pulses, the solution of Eqn. (1) with the initial condition of Eqn. (10) yields 
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where 
                                 ,       (18) 

and 
         (19) 

 
,     for                        .                                                                         (20) 

 
For the typical values of R ~10−2, τP ~1 µs, T ~10 ns, Eqn. (20) gives Q ~1 and Eqn. (17) shows that near saturation 
triplet shelving reduces the mean fluorescence signal by ~50%. For sub-picosecond pulses, the solution of Eqn. (1) with 
the initial condition of Eqn. (13), and with Eqn. (11) for one-photon excitation yields 
 
 

      (21) 
 
 

                                  (22) 
 
 

whereas Eqn. (13) with Eqn. (14) for two-photon excitation yields the same results as Eqns. (21) and (22) but with I  

replaced by 
          (23) 

and         replaced by 
,       (24) 

where 
.              (25) 

 
Eqns. (4), (17), and (22) may be approximated by power series expansions in 

      
to yield 

(26) 

where 

    for cw excitation with       (27) 

    for sub-nanosecond pulsed excitation with Q = 0, IS→ I′S.    (28) 

     for sub-picosecond pulsed excitation with Q = 0, IS→ I′S , or IS→I″S . (29) 
 
Fig. 2 illustrates the differences between Eqns. (4), (17), and (22) for the case of no triplet, R = Q = 0, and also a 
comparison with the Taylor expansions of Eqns. (26)—(29) in which only the first two terms are kept. 
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Fig. 2: F/Ck10 vs. η〈I〉 as calculated by Eqn. (4) with Q=0 (red; 
top),  and Eqns. (16) (green; middle) and (21) (blue; bottom)  for 
T/τF = 5. The dashed curves show the corresponding Taylor 
expansions of Eqns. (26), (27), (28), and (29) with just the first 
two terms kept. Note that the signal rate at which excitation 
saturation occurs is lower for pulsed excitation than for cw 
excitation, and is lower still for two-photon excitation. For cw 
excitation, the first order Taylor approximation is adequate for 
η〈I〉 < ~0.2.  
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2. FLUORESCENCE PROFILE WITH SATURATION  
 

For a Gaussian laser beam focused by a moderate N.A. microscope objective, the irradiance profile near the focus is 
 

(30) 
 
where P is the laser power, ω0 

is the beam waist, the Rayleigh range is 
           (31) 

n0 is the refractive index of the solvent, and λ0 is the vacuum wavelength of the laser. Moreover, for z < z0 

(32) 

where        
(33) 

denotes a Gaussian with standard deviation σ′, normalized such that 

 (34) 
and where we have set  

and                                   (35) 
so that the half-width of the Lorentzian profile in z is matched to the half-width of the Gaussian approximation. 
Similarly, with                                                                                      we have 

(36) 

 
The mean number of fluorescence photons per second detected from a single molecule located at x,y,z is given by 

Eqn. (4), (16), or (21) with 〈I〉 replaced by I(x,y,z), which is approximated by the 3-D Gaussian profile of Eqn. (32), and 
with C replaced by the collection efficiency function C(x,y,z), which is also approximated to be 3D-Gaussian in shape 

,                                                                      (37) 
with C0 equal to the peak collection efficiency, and σC ,σCz equal to the standard deviations in the radial and axial 
directions, as determined by the pinhole radius, and the magnification and numerical aperture of the microscope 
objective. Fig. 3 shows that as the laser irradiance increases, the fluorescence profile does not attain the flat-top profile 
that was assumed in Ref. [8] for C(x,y,z) = 1 and for the case of Eqn. (21) for two-photon sub-picosecond excitation. 
 

Since the product of two Gaussian functions is another Gaussian,  
                                                      ,                                                                (38) 

Eqn. (26) may be used to express the fluorescence profile as a sum of 3-D Gaussian functions: 

                                        (39) 
where  

                     (40) 

       (41) 
For low laser power and no saturation, only the first term in the sum of Eqn. (39) need be retained and the profile is 3-D 
Gaussian. 
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(dotted) and the resulting fluorescence profiles with 
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(dashed). The profiles are for the cross-section at y = z = 0, 
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saturated profiles do not have the “flat-top” profile that was 
assumed in Ref. [8].  

( ) 1/ 22 2( ) ,Cn nσ σ σ
−− −= + ( ) 1/ 21/ 2 2( ) (2 1) .n

z z Cznσ σ σ
−− −= − +

/x σ

F(x)/Ck10 

2

2

1
( , ) exp

22

s
G s σ

σπσ
 ′ = − ′′  

( , ) 1,ds G s σ
∞

−∞
′ =∫

132     Proc. of SPIE Vol. 5700



 

 

3. FORM OF THE AUTOCORRELATION FUNCTION WITHOUT SATURATION 
 
The normalized ACF is defined as  

,      (42) 
 

where F(t) is the photon count rate at time t, and the angular brackets denote an average over all times, whereby 

.     (43) 

A derivation of the theoretical form of g(τ) for the case of diffusion-induced concentration-fluctuations is given in the 
early FCS literature. Here we give a reformulated derivation in terms of single-photon detection from single-molecules, 
and the derivation is then extended to account for saturation. Let the number density of molecules be N molecules m−3. 
Note that N also equals the probability density to find a single molecule at any location x,y,z. If F(t) is a stationary 
ergodic random process, then the time averages in Eqn. (42) may be evaluated as ensemble averages and the average 
total rate of photons is independent of time and equals the count rate averaged over all possible molecule locations: 

          (44) 

                                (45) 

where B is the total background count rate, and where we have retained only the first term of Eqn. (39), omitted the 1 
notation in    , and used Eqn. (34) to perform the integrations. As F(t) is a stationary random variable, each of the two 
factors in the denominator of Eqn. (42) is given by Eqn. (45). The term F(t) F(t + τ) in the numerator is the rate of 
detection of pairs of photons that are separated by an interval τ. The first photon may arise from a single-molecule 
located at x1, y1, z1, with probability density N, or background. The second photon may arise either from the same single-
molecule, which has moved from x1, y1, z1, to x2, y2, z2 during the time interval τ, with a probability density                 
M(x1−x2, y1−y2, z1−z2, τ) or from a different single-molecule, again with probability density N, or from background.  The 
numerator of Eqn. (42) is thus: 

 
 

(46) 
where  

       (47) 
is the probability density for a molecule to diffuse from the origin to x,y,z at time τ, and 

.       (48) 
Eqn. (47) is the solution of the diffusion equation  

          (49) 
for the initial condition of a molecule located at the origin,                                       where                    is a 3-D Dirac delta 
function, and D is the diffusion coefficient. If there is a constant net flow component                        throughout the probe 
volume, or if the sample is translated as in scanning FCS, then a term −v·∇ N is added to the right of Eqn. (49) and the 
Gaussian probability densities in Eqn. (47) become increasingly displaced from the origin with time so that 

.     (50) 
The integrations on the second line of Eqn. (46) are easily performed by use of Eqn. (34), as was done to obtain Eqn. 
(45) from (44), to yield                . For the first line, the integrations for each dimension may be performed separately. 
For the x-dimension, the integration is 

.                                      (51) 
Note that the convolution of two Gaussians is another Gaussian, with a width that is the sum in quadrature of the widths 
of the two: 

.     (52) 
Application of Eqn. (52) to Eqn. (51) yields 

    (53) 
where 

 (54) 
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(55) 
 For the z-dimension, the integration is 

.                                      (56) 
with 

(57) 
Applying Eqns. (54) and (56) and Iy = Ix in (46) yields 

(58) 
where 

(59) 
For no flow, the product of the three Gaussian factors gives the familiar Lorentzian ACF shape: 

                (60) 
Substitution of Eqns. (45) and (58) into Eqn. (42) yields the following expression for the unity-background-subtracted 
normalized ACF: 

            (61) 

 

4. FORM OF THE AUTOCORRELATION FUNCTION WITH SATURATION 
 

To model saturation, higher order terms from Eqn. (39) must be used in Eqns. (44) and (46). Eqn. (45) becomes 
          (62) 

and Eqn. (58) becomes  

(63) 
where 

(64) 
 

(65) 

(66) 

Substituting these results into Eqn. (42) yields 

(67) 

If only the first two lowest order terms are retained, the result is 

(68) 

where          is given by Eqn. (59), and for no flow by Eqn. (60), and 

(69) 

and for no flow,  
(70) 

with 
(71) 

Eqn. (68) can be used as a fitting function for ACF data collected at laser powers where saturation begins to occur. 
No additional empirical parameters are needed if the laser power and beam characteristics can be measured and the 
saturation intensity IS  is calculated from Eqn. (6), or if Φ2/Φ1 is experimentally measured, as explained in section 6. The 
power dependence of the background B must also be measured and included in the analysis. A similar procedure can be 
followed to obtain the functional form of cross-correlation functions with saturation. For example, if the same laser beam 
and collection optics define the same probe region for two different detection systems, a and b, which may respond to 
different emission wavelength bands with peak collection efficiencies of             and with backgrounds               Eqn. 
(63) would be replaced by the cross-correlation  

(72) 
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5. EXPERIMENTAL MEASUREMENTS 
 

Fig. 4a presents experimental measurements of the mean fluorescence count rate versus laser power, normalized by 
the solution absorption at each wavelength used, for an 11.4 µM solution of Rhodamine B in water. For these 
experiments, the incoming laser beam considerably under-filled the microscope objective to ensure that the beam was 
not tightly focused in the sample and the fluorescence was collected only from the central region of the focused beam by 
use of a small pinhole as a spatial filter. Under these conditions, it should not be necessary to account for the spatial 
integrations of Eqn. (44) and the fluorescence count rates are expected to directly follow the shape of Eqn. (4) for 
continuous wave (cw) and Eqn. (19) for sub-nanosecond pulsed excitation. Fig. 4a, which shows results for 532 nm 
70ps/76MHz pulsed excitation and 514 nm cw excitation, thereby illustrates one of the key points that the fluorescence 
rate at which excitation saturation occurs is lower for pulsed excitation than for cw excitation.  
 

Fig. 4b presents a series of autocorrelation curves collected from a 1.14 nM solution of Rhodamine B in water with 
cw excitation at 514 nm. The major change apparent is that the amplitude decreases for increasing laser power due to 
excitation saturation. From Eqn. (61), one expects a decrease in ACF amplitude with increasing background B and hence 
a small (<~10%) correction for background has already been applied in the plots of Fig. 4b, by separately measuring the 
background rate from pure water and renormalizing the curves by a factor of (1+ B / F)2, where F is the fluorescence 
count rate. Detector afterpulses were also calibrated and corrected for in the results of Fig. 4b. In addition to the decrease 
in amplitude as the laser power is increased, the width of the ACF is also found to increase slightly, consistent with Eqn. 
(68).  However, other photophysical effects, such as triplet crossing and photobleaching may also contribute to the 
changes as the laser power is increased. Although these effects can also be included in a curve-fitting model, a more 
direct demonstration of the saturation model derived in section 4 would result if such effects were absent. Therefore, in 
section 6, results from a Monte Carlo simulation are used to demonstrate the application of the saturation model. 
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Fig. 4: (a) Experimental measurements of the fluorescence count rate versus laser power, normalized by the absorptivity 
at the used wavelength, illustrating differences in the onset of saturation for pulsed (532 nm) and continuous wave (514 
nm) irradiation. The red curves are fits to Eqns. (19) and (4) respectively. (b) Measured autocorrelation function curves, 
after correction for background and afterpulses, for laser powers from 30 to 500 µW at the sample. As the laser power is 
increased, the ACF amplitude decreases, and the width increases slightly as the effective probe volume increases. 
 

6. SIMULATED ACF DATA WITH SATURATION 
 

An ab-initio Monte Carlo simulation of FCS for cw excitation [9] was used to generate ACF data for known 
experimental parameters, in order to demonstrate that curve fitting using Eqn. (68) can recover consistent parameters 
when saturation is present. The simulation models excitation saturation by requiring a time delay following each 
excitation of a molecule before subsequent excitation may occur, where the delay is a random real number with an 
exponential distribution with decay time equal to the fluorescence lifetime, or to the phosphorescence lifetime if triplet 
crossing occurs. Fig. 5a shows a series of ACF data generated by the simulation with background, triplet crossing, 
photobleaching, and solution flow set to zero, and with the pinhole opened so that                                to allow the 
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simplifications of Eqns. (71). Fig. 5b shows a plot of the total fluorescence count rate for this same set of data, together 
with a curve fit to a quadratic function 

(73) 
The total fluorescence is expected to follow Eqn. (62), and if only the first two terms are kept 

(74) 
From Eqn. (40) it may be seen that 

(75) 
and hence, by comparing Eqns. (73) and (74), 

(76) 
The ACF in Fig. 5a are fit to the standard “pure-diffusion” formula of Eqns. (60) and (61), and also, as shown in the 
figure, to the “saturation” model given by Eqns. (68), (60), and (70) using the measured value of              determined 
from Fig. 5b and the known laser power, and with                        in Eqn. (71). The ‘confocal parameter’                 is held 
fixed so that there are two fitting parameters for each model. Fig. 6a shows that the decrease in amplitude of the ACF 
with increasing laser power is incorrectly interpreted by the pure-diffusion model as a change in the mean number of 
molecules in the probe volume,                    and Fig. 6b shows that the slight increase in width of the ACF with 
increasing laser power is incorrectly interpreted as an increase in the diffusional residence time,    . By contrast, the 
“saturation” model gives consistent values as the laser power increases up to of ~250 µW. Beyond this point, a higher 
order approximation of Eqn. (67) with a cubic fit to Fig. 5b would be needed to achieve consistent parameter values. 
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Fig. 5: (a) Series of simulated ACF for laser powers from 4 to 400 µW exhibiting changes due to excitation saturation; 
(b) the total fluorescence count rate versus laser power for the data in (a), together with a quadratic curve fit. 
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